3.674 \(\int \frac{(d+e x)^{5/2} (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx\)

Optimal. Leaf size=154 \[ \frac{2 \sqrt{d+e x} \left (2 a e^2 g+c d (e f-3 d g)\right )}{3 c^2 d^2 \left (c d^2-a e^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{2 (d+e x)^{5/2} (c d f-a e g)}{3 c d \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

[Out]

(-2*(c*d*f - a*e*g)*(d + e*x)^(5/2))/(3*c*d*(c*d^2 - a*e^2)*(a*d*e + (c*d^2 + a*
e^2)*x + c*d*e*x^2)^(3/2)) + (2*(2*a*e^2*g + c*d*(e*f - 3*d*g))*Sqrt[d + e*x])/(
3*c^2*d^2*(c*d^2 - a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

_______________________________________________________________________________________

Rubi [A]  time = 0.410604, antiderivative size = 154, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 44, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.045 \[ \frac{2 \sqrt{d+e x} \left (2 a e^2 g+c d (e f-3 d g)\right )}{3 c^2 d^2 \left (c d^2-a e^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{2 (d+e x)^{5/2} (c d f-a e g)}{3 c d \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]  Int[((d + e*x)^(5/2)*(f + g*x))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(c*d*f - a*e*g)*(d + e*x)^(5/2))/(3*c*d*(c*d^2 - a*e^2)*(a*d*e + (c*d^2 + a*
e^2)*x + c*d*e*x^2)^(3/2)) + (2*(2*a*e^2*g + c*d*(e*f - 3*d*g))*Sqrt[d + e*x])/(
3*c^2*d^2*(c*d^2 - a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 46.1659, size = 146, normalized size = 0.95 \[ - \frac{2 \left (d + e x\right )^{\frac{5}{2}} \left (a e g - c d f\right )}{3 c d \left (a e^{2} - c d^{2}\right ) \left (a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )\right )^{\frac{3}{2}}} - \frac{2 \sqrt{d + e x} \left (2 a e^{2} g - 3 c d^{2} g + c d e f\right )}{3 c^{2} d^{2} \left (a e^{2} - c d^{2}\right ) \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((e*x+d)**(5/2)*(g*x+f)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

-2*(d + e*x)**(5/2)*(a*e*g - c*d*f)/(3*c*d*(a*e**2 - c*d**2)*(a*d*e + c*d*e*x**2
 + x*(a*e**2 + c*d**2))**(3/2)) - 2*sqrt(d + e*x)*(2*a*e**2*g - 3*c*d**2*g + c*d
*e*f)/(3*c**2*d**2*(a*e**2 - c*d**2)*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**
2)))

_______________________________________________________________________________________

Mathematica [A]  time = 0.0698872, size = 52, normalized size = 0.34 \[ -\frac{2 (d+e x)^{3/2} (2 a e g+c d (f+3 g x))}{3 c^2 d^2 ((d+e x) (a e+c d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]  Integrate[((d + e*x)^(5/2)*(f + g*x))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x)^(3/2)*(2*a*e*g + c*d*(f + 3*g*x)))/(3*c^2*d^2*((a*e + c*d*x)*(d +
e*x))^(3/2))

_______________________________________________________________________________________

Maple [A]  time = 0.008, size = 66, normalized size = 0.4 \[ -{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( 3\,xcdg+2\,aeg+cdf \right ) }{3\,{c}^{2}{d}^{2}} \left ( ex+d \right ) ^{{\frac{5}{2}}} \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade \right ) ^{-{\frac{5}{2}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((e*x+d)^(5/2)*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x)

[Out]

-2/3*(c*d*x+a*e)*(3*c*d*g*x+2*a*e*g+c*d*f)*(e*x+d)^(5/2)/c^2/d^2/(c*d*e*x^2+a*e^
2*x+c*d^2*x+a*d*e)^(5/2)

_______________________________________________________________________________________

Maxima [A]  time = 0.729525, size = 99, normalized size = 0.64 \[ -\frac{2 \,{\left (3 \, c d x + 2 \, a e\right )} g}{3 \,{\left (c^{3} d^{3} x + a c^{2} d^{2} e\right )} \sqrt{c d x + a e}} - \frac{2 \, f}{3 \,{\left (c^{2} d^{2} x + a c d e\right )} \sqrt{c d x + a e}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^(5/2)*(g*x + f)/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2),x, algorithm="maxima")

[Out]

-2/3*(3*c*d*x + 2*a*e)*g/((c^3*d^3*x + a*c^2*d^2*e)*sqrt(c*d*x + a*e)) - 2/3*f/(
(c^2*d^2*x + a*c*d*e)*sqrt(c*d*x + a*e))

_______________________________________________________________________________________

Fricas [A]  time = 0.27033, size = 174, normalized size = 1.13 \[ -\frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (3 \, c d g x + c d f + 2 \, a e g\right )} \sqrt{e x + d}}{3 \,{\left (c^{4} d^{4} e x^{3} + a^{2} c^{2} d^{3} e^{2} +{\left (c^{4} d^{5} + 2 \, a c^{3} d^{3} e^{2}\right )} x^{2} +{\left (2 \, a c^{3} d^{4} e + a^{2} c^{2} d^{2} e^{3}\right )} x\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^(5/2)*(g*x + f)/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2),x, algorithm="fricas")

[Out]

-2/3*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(3*c*d*g*x + c*d*f + 2*a*e*g)*s
qrt(e*x + d)/(c^4*d^4*e*x^3 + a^2*c^2*d^3*e^2 + (c^4*d^5 + 2*a*c^3*d^3*e^2)*x^2
+ (2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*x)

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x+d)**(5/2)*(g*x+f)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.835185, size = 4, normalized size = 0.03 \[ \mathit{sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^(5/2)*(g*x + f)/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2),x, algorithm="giac")

[Out]

sage0*x